Minimax risk over large classes of signals
Statistical theory for high- and infinite-dimensional models

Jolien Oomens
May 10th, 2017
Some L^2 theory

Recall we write

$$e_n = e^{2\pi i n x},$$

and that

$$\{e_n : n \in \mathbb{Z}\}$$

is an orthonormal basis of $L^2[0,1]$.

The distance between e_n and e_m ($m \neq n$) is

$$\|e_n - e_m\|_2^2 = \langle e_n - e_m, e_n - e_m \rangle = 1 + 1 = 2.$$
Recall we write
\[e_n = e^{2\pi i n x} \in L^2[0, 1] \]
Some L^2 theory

Recall we write

$$e_n = e^{2\pi inx} \in L^2[0, 1]$$

and that

$$\{e_n : n \in \mathbb{Z}\}$$

is an orthonormal basis of $L^2[0, 1]$.
Some L^2 theory

Recall we write

$$e_n = e^{2\pi inx} \in L^2[0, 1]$$

and that

$$\{e_n : n \in \mathbb{Z}\}$$

is an orthonormal basis of $L^2[0, 1]$. The distance between e_n and e_m ($m \neq n$) is $\sqrt{2}$:
Recall we write
\[e_n = e^{2\pi inx} \in L^2[0, 1] \]
and that \(\{e_n : n \in \mathbb{Z}\} \) is an orthonormal basis of \(L^2[0, 1] \).
The distance between \(e_n \) and \(e_m \) (\(m \neq n \)) is \(\sqrt{2} \):
\[
\| e_n - e_m \|_{L^2}^2 = \langle e_n - e_m, e_n - e_m \rangle
\]
Some L^2 theory

Recall we write

$$e_n = e^{2\pi inx} \in L^2[0, 1]$$

and that

$$\{e_n : n \in \mathbb{Z}\}$$

is an orthonormal basis of $L^2[0, 1]$.

The distance between e_n and e_m ($m \neq n$) is $\sqrt{2}$:

$$\|e_n - e_m\|_{L^2}^2 = \langle e_n - e_m, e_n - e_m \rangle = 1 + 1 = 2.$$
Exercise 5.1(i)

Prove that for every $p > 0$ we have

$$\inf \sup E_f \| \hat{f} - f \|_{L^2}^p \rightarrow \infty \text{ as } n \rightarrow \infty.$$
Exercise 5.1(i)

Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|_{L^2}^p \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|_{L^2}^p \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$.

Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \|\hat{f} - f\|_{L^2}^p \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$G_n := \{\sqrt{n}e^j : j \in \{1, 2, \ldots, e^{n^2}\}\}.$$
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf \sup_{\hat{f}} E_f \| \hat{f} - f \|_{L^2}^p \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$G_n := \{ \sqrt{n}e^j : j \in \{1, 2, \ldots, e^{n^2}\} \}.$$

Then the elements in G_n are $2r_n$-seperated,
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf \sup_{\hat{f}} E_f \| \hat{f} - f \|^p_{L^2} \rightarrow \infty \text{ as } n \rightarrow \infty.$$

We would like to use Proposition 5.2.2.

Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$\mathcal{G}_n := \{ \sqrt{n}e^{j} : j \in \{1, 2, \ldots, e^{n^2}\} \}.$$

Then the elements in \mathcal{G}_n are $2r_n$-separated, $|\mathcal{G}_n| = e^{n^2}$.
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf \sup_{\hat{f}} \left(\hat{f} - f \right)^p_{L^2} \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$\mathcal{G}_n := \{ \sqrt{n}e_j : j \in \{1, 2, \ldots, e^{n^2}\} \}.$$

Then the elements in \mathcal{G}_n are $2r_n$-seperated, $|\mathcal{G}_n| = e^{n^2}$ and $\text{diam}(\mathcal{G}_n)^2 = 2n$.

Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$G_n := \{ \sqrt{n}e^j : j \in \{1, 2, \ldots, e^{n^2}\} \}.$$

Then the elements in G_n are $2r_n$-separated, $|G_n| = e^{n^2}$ and $\text{diam}(G_n)^2 = 2n$. Hence indeed

$$e^{\frac{1}{2}n \text{diam}(G_n)^2} = e^{n^2} = |G_n|,$$
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$G_n := \{ \sqrt{n}e^j : j \in \{1, 2, \ldots, e^{n^2}\} \}.$$

Then the elements in G_n are $2r_n$-seperated, $|G_n| = e^{n^2}$ and $\text{diam}(G_n)^2 = 2n$. Hence indeed

$$e^{\frac{1}{2}n \text{diam}(G_n)^2} = e^{n^2} = |G_n|,$$

so the proposition gives

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \geq cr_n^p.$$
Exercise 5.1(i)
Prove that for every $p > 0$ we have

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \|\hat{f} - f\|_{L^2}^p \to \infty \text{ as } n \to \infty.$$

We would like to use Proposition 5.2.2.
Define $r_n = \frac{1}{2} \sqrt{2n}$. Define

$$G_n := \{\sqrt{n}e_j : j \in \{1, 2, \ldots, e^{n^2}\}\}.$$

Then the elements in G_n are $2r_n$-seperated, $|G_n| = e^{n^2}$ and $\text{diam}(G_n)^2 = 2n$. Hence indeed

$$e^{\frac{1}{2} n \text{diam}(G_n)^2} = e^{n^2} = |G_n|,$$

so the proposition gives

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \|\hat{f} - f\|_{L^2}^p \geq cr_n^p.$$

Letting $n \to \infty$ now proves the desired equality.
Exercise 5.1(ii)

Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf_{\hat{f}} \sup_{f \in L^2_{1}[0,1]} E_{f} \| \hat{f} - f \|_{L^2}^p \geq c.$$
Exercise 5.1(ii)
Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf_{\hat{f}} \sup_{f \in L^2_1[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \geq c.$$

Define $r_n = \frac{1}{2} \sqrt{2}$ and

$$G_n := \{ e_j : j \in \{1, 2, \ldots, e^n \} \}.$$
Exercise 5.1(ii)
Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf_{\hat{f}} \sup_{f \in L_1^2[0,1]} E_f \|\hat{f} - f\|_{L_2}^p \geq c.$$

Define $r_n = \frac{1}{2} \sqrt{2}$ and

$$G_n := \{e_j : j \in \{1, 2, \ldots, e^n\}\}.$$

Then the elements in G_n are $2r_n$-seperated, $|G_n| = e^n$ and $\text{diam}(G_n)^2 = 2.$
Exercise 5.1(ii)
Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf \sup E_f \| \hat{f} - f \|_{L^2}^p \geq c.$$

Define $r_n = \frac{1}{2} \sqrt{2}$ and

$$G_n := \{ e_j : j \in \{1, 2, \ldots, e^n \} \}.$$

Then the elements in G_n are $2r_n$-seperated, $|G_n| = e^n$ and $\text{diam}(G_n)^2 = 2$. Hence indeed

$$e^{\frac{1}{2} n \text{diam}(G_n)^2} = e^n = |G_n|,$$
Exercise 5.1(ii)

Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf_{\hat{f}} \sup_{f \in L^2_{1}[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \geq c.$$

Define $r_n = \frac{1}{2} \sqrt{2}$ and

$$\mathcal{G}_n := \{ e_j : j \in \{1, 2, \ldots, e^n \} \}.$$

Then the elements in \mathcal{G}_n are $2r_n$-seperated, $|\mathcal{G}_n| = e^n$ and $\text{diam}(\mathcal{G}_n)^2 = 2$. Hence indeed

$$e^{\frac{1}{2}n \text{diam}(\mathcal{G}_n)^2} = e^n = |\mathcal{G}_n|,$$

so the proposition gives

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p_{L^2} \geq cr_n^p.$$
Exercise 5.1(ii)

Prove that for $p > 0$ there exists $c > 0$ such that

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p \geq c.$$

Define $r_n = \frac{1}{2} \sqrt{2}$ and

$$G_n := \{ e_j : j \in \{1, 2, \ldots, e^n\} \}.$$

Then the elements in G_n are $2r_n$-seperated, $|G_n| = e^n$ and $\text{diam}(G_n)^2 = 2$. Hence indeed

$$e^{\frac{1}{2}n \text{diam}(G_n)^2} = e^n = |G_n|,$$

so the proposition gives

$$\inf_{\hat{f}} \sup_{f \in L^2[0,1]} E_f \| \hat{f} - f \|^p \geq cr_n^p.$$

Letting $n \to \infty$ we obtain desired equality.
Exercise 5.1 (iii)

Let $\mathcal{F} \subset L^2[0, 1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \|\hat{f} - f\|_{L^2}^p \geq c$.

Jolien Oomens (UvA) May 10th, 2017 5 / 5
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf \hat{f} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0, 1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that
$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c.$$

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ.

Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \|\hat{f} - f\|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
Exercise 5.1(iii)

Let \(\mathcal{F} \subset L^2[0,1] \) be bounded but not totally bounded. Show that for \(p > 0 \) there is a \(c > 0 \) such that \(\inf \hat{f} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|^p_{L^2} \geq c \).

Let \(n \in \mathbb{N} \) and take \(M \) such that \(\mathcal{F} \subset B(0, M) \). Since \(\mathcal{F} \) is not totally bounded there exists \(\epsilon > 0 \) such that \(\mathcal{F} \) cannot be covered by finitely many balls of radius \(\epsilon \).

- Pick a first ball \(B_1 \subset \mathcal{F} \) of radius \(\epsilon \). (This is possible, otherwise we could cover \(\mathcal{F} \) with one ball.)
- If we’ve chosen \(m - 1 \) balls we can pick \(B_m \) such that the centre is not inside some previously picked ball.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \|\hat{f} - f\|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_f \|\hat{f} - f\|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0,M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_{\hat{f}} \|\hat{f} - f\|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls. Then $|\mathcal{G}_n| = e^{n^2}$.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} E_{f} \|\hat{f} - f\|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls. Then $|\mathcal{G}_n| = e^{n^2}$, the elements of \mathcal{G}_n are ϵ-separated
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf_{f} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls. Then $|\mathcal{G}_n| = e^{n^2}$, the elements of \mathcal{G}_n are ϵ-separated and $\text{diam}(\mathcal{G}_n)^2 \leq 4M^2$.
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf \| \hat{f} - f \|^p_{L^2} \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0,M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)
- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls. Then $|\mathcal{G}_n| = e^{n^2}$, the elements of \mathcal{G}_n are ϵ-seperated and $\text{diam}(\mathcal{G}_n)^2 \leq 4M^2$. For large n

$$e^{\frac{1}{2} n \text{diam}(\mathcal{G}_n)^2} = e^{2nM^2} \leq |\mathcal{G}_n| = e^{n^2},$$
Exercise 5.1(iii)

Let $\mathcal{F} \subset L^2[0,1]$ be bounded but not totally bounded. Show that for $p > 0$ there is a $c > 0$ such that $\inf \hat{f} \sup_{f \in \mathcal{F}} E_f \| \hat{f} - f \|_{L^2}^p \geq c$.

Let $n \in \mathbb{N}$ and take M such that $\mathcal{F} \subset B(0, M)$. Since \mathcal{F} is not totally bounded there exists $\epsilon > 0$ such that \mathcal{F} cannot be covered by finitely many balls of radius ϵ.

- Pick a first ball $B_1 \subset \mathcal{F}$ of radius ϵ. (This is possible, otherwise we could cover \mathcal{F} with one ball.)

- If we’ve chosen $m - 1$ balls we can pick B_m such that the centre is not inside some previously picked ball. (If not, then we covered \mathcal{F} with $m - 1$ balls.)

We continue this process until we have e^{n^2} of these balls. Now let \mathcal{G}_n be the set of all centres of these balls. Then $|\mathcal{G}_n| = e^{n^2}$, the elements of \mathcal{G}_n are ϵ-separated and $\text{diam}(\mathcal{G}_n)^2 \leq 4M^2$. For large n

$$\frac{1}{2} e^{n} \text{diam}(\mathcal{G}_n)^2 = e^{2nM^2} \leq |\mathcal{G}_n| = e^{n^2},$$

so the proposition gives the result.